Refine Your Search

Topic

Author

Search Results

Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Technical Paper

Application of Mizenboushi (GD3) Method of Problem Prevention to Vehicle, Component and Subsystem Validation

2011-04-12
2011-01-1275
The GD₃ or GD Cubed method of problem prevention has been applied to product changes and to test results at the component, subsystem and vehicle level. GD₃ stands for Good Design - Good Discussion - Good Dissection. Good Discussion of changes (Design Review Based on Failure Mode) identifies BUDS of PROBLEMS that may arise from interfaces and areas of change. Good Dissection (Design Review Based on Test Results) is applied to physical test samples during and after tests to identify Buds of Problems that may not be obvious from inspection of the parts or test results. The paper first describes implementation of the GD₃ principles and methods supporting Good Discussion (DRBFM) and Good Dissection, and then discusses how they are applied and embedded in the Vehicle Development Process at General Motors Co.
X